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Abstract-A theoreticat study is made of the etkct of geometrical ~rn~~~~t~~~s on the formation ofweakfy 
nonlinear convection in a shatlow tw~djmensi~nal cavity unifmmly heated from below. ff the sidewalk ofthe 
cavity are not quite vertical then convective rolls first appear near these walls and subsequentiy spread 
inwards to the centre ofthe cavity as the Rayleigh number is increased, lfthe horizontal surfaces are not quite 
parallel then the major effect is a lateral modulation of the rolls due to a combination of the misalignment of 
the h~ri~on&al surfaces and the presence of the sidewaIfs. As an jnterest~ng special case, the solution for a 
cavity of uniformly sloping base is presented and asymptotic methods are found to provide a remarkably 

accurate prediction for the criticat Rayleigh number as a function of angk of inclination. 

NOMENCLATURE 

a, b, CwStaRtS ; 

a1.2.3,47 amplitude equation ~~~~~ent~ ; 
4&a amplitude function ; 
AfX),A,fX), scaled ampfitude functions; 

A,, B,, constants; 

$W 

cavity height ; 
eige~fun~t~5ns ; 

CA acceferation of gravity ; 
GofXj. G, (X), tateral variation of horizontal 

wails ; 
=c, -G, 
vertical variation of vertical walls; 
semi aspect ratio of cavity ; 
direction normai to sidewaRs; 
non-dimensionaf pressure ; 
scaled non~jmens~ona~ pressure ; 
Rayleigb number; 
critical Rayleigh number for infinite 
layer ; 
direction along sidewati; 
temperatures of lower and upper surfaces 
~~s~tiveIy~ ; 
non-dimensionaf velocity components; 
scaled non-dimensional velocity com- 
portents, 
non~dimensjonal co-ordinates; 

x,x,,x,. scaled horizontal co-ordinates. 

Greek symbols 

51, err5r in alignment of horizonta1 
_ 
a, eigenvalues ; 
a, coefficient of thermal expansion; 

walls ; 

errOr in a~jg~ment of vertical walls; 
constants; 
scaled focal RayIeigh numbers; 
thermal diffusivity ; 
scaled form of fi; 

% scaled form of x ; 
y, kinematic viscosity ; 

- Xnr zeros of the Airy funetiort, ki. 

non-dimensional stream function ; 
density ; 
Prandtt number; 
non-d~rnens~ona~ temperature 
perturbation ; 
scaled non-dimensional temperature 
perturbation ; 

ONE 0F the difficulties encountered in e~~rim~~~al 
studies of the heat transport properties of cavity flows, 
particufarly if the apparatus is constructed on a very 
small scale, is that of ensuring that the cavity walls are 
of perfect length and alignment. For example, novel 
features of experimental resuhs obtained by Ahlers [I] 
are thought to be attributable [2] to smalt imper- 
fections in geometry involving typical variations of as 
Iittte as 3% of the height of the cavity. This paper 
considers the effect of such imperfections or misalign- 
ments onthe flow in a shallow 2-dim. cavity of semi- 
aspect ratio L (>3 1) bounded by rigid surfaces and 
uniformly heated from below, The upper and lower 
planes are maintained at constant temperatures T, 
and TO ~rEs~t~e~y~ where & r T,, and are assumed 
to be horizontal to within an error in height of 
magnitude a. The sidewalls are taken as either perfect 
insulators or conductors and are assumed to be 
vertical {i.e. ahgned with the direction of gravity) to 
within an error in inclination of magnitude 8. The 
remaining parameters of the problem are the Rayleigb 
number R and Prandtl number o defined by 

R = Egd3(To - T,)/Kv, o = V/K (1*1) 
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where 07, K and v are respectively the coefficient of 
thermal expansion, thermal diffusivity and kinematic 
viscosity of the fluid ; d is taken as the vertical height of 
the cavity at its central point. The steady 2-dim. 
Oberbeck-Boussinesq equations are then 

24, + W, = 0, 

u- i (uu, + wu,) = - p, + v2u, 

u-‘(uw,+ww,)= -p,+v2w+e, 

UB, + we, = Rw + WI. (1.2) 

Here the co-ordinates X, z, velocity components u, w 
and reduced pressure p are non-dimensionai with 
respect to the quantities d, K/d and pK2/d2 where p is 
the density of the fluid and V2 = (a2/ax2) + (LJ2/8z2). 0 
is the non-dimensional perturbation from the basic 
linear conductive temperature field : 

T = l-0 f (T, - T,)z + (1.3) 

The origin of co-ordinates is taken at the centre of the 
lower surface (see Fig. 1). 

Although in a 3-dim. layer of rectangular planform 
the rolls tend to align with the shorter side (Davis [3]) 
it should be stressed that this does not imply that the 
present results are physically unrealistic. Provided the 
aspect ratio in the third dimension is smaller than 2L 
(but still large compared to 1) we may envisage the 
present solutions to apply, at least qualitatively, to the 
region which excludes the immediate neighbourhood 
of the walls parallel to the x direction. Of course the 
imperfect geometry may itself affect the alignment of 
the rolls and in a related study of the effect of a lateral 
temperature gradient in an infinite system, Weber [4] 
has shown that rolls aligned perpendicular to the 
direction of lateral variation, as we assume here, are in 
fact preferred over a wide range of Prandtl numbers. 

2. SIDEWALL MISALIGNMENT 

In this section we assume the upper and lower rigid 
surfaces to be perfectly horizontal so that 

u==w=@=0(z=0,2=1), (2.1) 

but assume a misalignment of the left-hand sidewall, its 
position being given by 

x = - L + @(z), (2.2) 

where h is an arbitrary function of z and fi CC 1. If this 
wall is assumed to be rigid and perfectly insulating we 
require 

u(-L + /Ih,z) = w(-L + fih,z) 

=Z(-L+&z)=O, (2.3) 

where n is the normal direction to the wall. Expansion 
in Taylor series and use of (1.3) shows that at leading 
order these boundary conditions become 

u( - L, 2) = w( - L, z) = 0, 

g(-L,z) = -pRh’(z). (2.4) 

Clearly the non-zero component of the boundary 
condition (2.4) will generate motion near the sidewall, 
where x + L = O(l), for all values of the Rayleigh 
number, this motion being governed by the linear 
version of equations (1.2), which may be written in the 
form 

V’$ - RI/J,, = 0, (2.5) 

where $ is the stream function defined by u = bl/,, 
w = - li/,. The solution near the sidewall may thus 
be expressed as 

9 = p C {A,lein”X+L’f,I(z) 
lm(z,)>O 

#>>O 

+ A*e-iz:lx+Llfz, lzj 

+ B:IeCb2(X+ L)fzL(z)f, (2.6) 

where * denotes complex conjugate and c? = ar, - ol: 
and ia, are the triply-infinite set of eigenvalues, with 
corresponding eigenfunctions f,,, t1 and f,, of the 
system 

& + Roi2& = 0, 

& =.f; =,f;” - 2oi2f,“= 0 (z = 0, l), (2.7) 

resulting from equation (2.5) and boundary conditions 
(2.1). The corresponding solution for 0 may be de- 
termined from S, = V’J/. The determination of the 
eigenvalues C with positive imaginary part presents a 
considerable numerical problem and although the 
corresponding eigenfunctionsf, will not be orthogonal 
we may, in principle, suppose that they are complete so 
that the three boundary conditions will determine the 
values ofeach set of three real constants comprising B,, 
and the real and imaginary parts of AmI. Ofcourse (2.7) 
is the classical Benard problem (see [5]) and when R 
reaches the critical value of R, = 1707.8 the imaginary 
part of the leading eigenvalue, tlr, becomes zero (i.e. (Y, 
-+ a, with a, real) and two components of the solution 
(2.6) no longer decay into the bulk of the cavity. The 
entire procedure can be described analytically by 
replacing the rigid horizontal surfaces by stress-free 
ones, since then thef? are orthogonal,fi = sin rnrz, (n = 
1,2...), R, = 27n”/4, a0 = r-r/$ and the A,, and B,, 
can be determined explicitly from (2.4) by Fourier 
decomposition of h’(z). 

When R just exceeds R, the motion in the bulk of the 
cavity can be described using a multiple scales ap- 
proach. It is convenient to expand the solution using 
L-’ as a single small parameter (see [6]) and then 
significant changes in the cellular motion first occur in 
the range 

R = R, + SoL-2, (2.8) 

where 6, = 0( 1). The solution in the bulk has the form 
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FIG. 1. Schematic diagram of the cavity truss-section. 

+ O(L-2), (- 1 <x< I). (2.9) 

where X = L-*.x and f,,, is the reaf ei~enfun~ti~n 

corresponding to tie. The expansion is continued to 
terms of 0(LW3) to determine the compatibility 
equation for the amplitude function A,, which has the 
form 

where a,, a2 and a3 are positive numerical constants 
which have been determined previously (see for ex- 
ample [7]). In the stress-free case their values may be 
determined analytically as a, = 1/18nz,a, = rr2,/16, a3 
= 0. The boundary condition for this equation at X = 
- 1 is given by matching the bulk solution (2.9) to the 
sidewall solution (2.6) which requires that flAeoeiaoL = 
L-‘A,(- 1). Thus in the critical range of Rayleigh 
number given by (2.8) the misalignment of a perfectly 
insulating sidewall has a significant effect on the 
motion throughout the container if/J’ = O&-i), and if 
the sidewall at x = L has a similar misalignment then 
equation (2.10) must be solved subject to boundary 
conditions of the form 

A,( - 1) = (/IL)ae”, A,(l) = (PL)be_“, (2.11) 

where y = a& + ye and a, b and ye are numerical 
constants. In the stress-free case a is given by a = 3fi h 
sin rrz dr, with ye = cot- ‘(lJ2J2). 

If the sidewalls are perfect conductors the third 
boundary condition in (2.3) is replaced by 

7-- L + Bh, z) = T, -t- (T, - T&/s,,,,,, (2.12) 

where s measures distance along the wall. Expansion in 
Taylor series and use of (1.3) now shows that (2.4) is 
replaced by 

U(-L,z)= w(-L,z)=O, 

8(-_L.z)=~~‘Rlz~~ h”dz-~~h”dzl. (2.13) 

Thus the misalignment of a perfectly conducting wall 
has a significant effect if /3 = O(L- ‘@) and the 
boundary conditions (2.11) are replaced by conditions 
of the form 

A,( - 1) = (/PL)ue+, A,(l) = (~ZL)be”iY. (2.14) 

Note that in this case the effect disappears if the 
sidewall slopes at a constant angle since then h’ is 
constant in (2.13)givingt?( -L,z) = 0; theconstant uis 
then zero, as for a vertical wall. 

3. LATERAL MrSAL~~NM~NT 

Consider now the modi~cations which occur if the 
upper and lower surfaces are maintained at constant 
temperatures T, and To but are no longer perfectly 
horizontal Let us suppose that the surfaces are given 

by 

z = aG,(X) and z = 1 f NC,(X), (3.1) 

where we assume initially that a CC 1. The boundary 
conditions are then 

u(x, “G,) = w(x,aG,) = u(x, 1 + aG,) 
= w(x, f + aG,) = 0, 

T(x, aG,) = T,, 7-(x,1 +CS,t= T,, (3.21 

and expansion in Taylor series and use off 1.3) yields at 
leading order 

u(x, 0) = W(X,O) = U(X, 1) = w(x, I) = (1, 
@(x,0) = &G,(X), B(x, 1) = aRG,(X). (3.3) 

The motion generated in the cavity by these boundary 
conditions can be determined from equations (1.2). In 
the bulk 

u = L- ‘otu,(X,z) f “. ., w = L-%w,(X,z) + . ., 
p = ap,(X, z) + . . .I 0 = ffO,(X,z) f ““. (3.4) 

where 

Ul, + &; = 0, 0 = - Pl, + Ul,;* 
0 = - PI, + e,, 01;; = 0. (3.5) 

The appropriate solutions which satisfy the boundary 
conditions (3.3) are 

8, = %Gc + (G, - G&l, 

- Q(?Gb + 3G;B2 + &(3Gb + 2Grfz]. (3.6) 

These do not satisfy the boundary conditions at the 
sidewalls of the cavity and so generate additional 
motions in the end-regions, being effectively equivalent 
to non-zero boundary conditions similar to those of 
(2.4) and (2.13) above. If the sidewall is vertical and 
either perfectly insulating or conducting it follows 
from (3.4) and (3.6) that the magnitude of the motion 
generated there is O(aL-‘) and then the amplitude 
function d, must vanish at X = + 1. However, the 
equation for A, is now modified by additional terms 
arising from (3.6) which are due to the variation in 
height of the layer. The effect is equivalent to a ‘local 
Rayleigh number varying by an amount O(a) and so 
the appropriate ma~it~de of a to modify (2.10) when 
6, = O(l) is OIL-‘1. The equation becomes 
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The corresponding equation for a variation of just 
the lower surface of an infinite layer has been derived 
previously by Eagles [8] and the value of the positive 
numerical constant a4 may be inferred from his results 
if required. In the infinite layer (- z <XC -/-) 
equation (3.7) generally has both a discrete and 
continuous spectrum of solutions, depending upon 
whether the local Rayleigh number at infinity is 
subcritical or supercritical (see [8]), but in Section 4 
below we find that the presence of sidewalls at X = i 1 
not only removes the continuous spectrum, but has a 
strong influence on the amplitude profiles across the 
layer. 

4. SOLIJTIONS OF THE AMPLI~DE EQUATION 

We may combine the effects of lateral and sidewall 
misalignment by writing 

c( = L-za,’ /l, 
/l=: L-1 (az + a-‘a,)-‘J2i. 

(insulating sidewall) 

and with 
(conducting sidewall) (4.1) 

A, = (a2 + a-‘aJi’2A(X), a,& = 6, 
G, - G, = G(X), (4.2) 

we obtain from (3.7), (2.11) and (2.14) the general 
system 

A,, + 6A - pG(X)A - AlAl’ = 0, 

A( - 1) = i.ae”, A(1) = Ibe-“‘. (4.3) 

Solutions of this system in the case p = 0 have 
already been discussed by [6] in the context of 
imperfectly insulated vertical sidewalls, the parameter 
i then representing the magnitude of the heat flow 
through the sidewalls rather than their slope. The main 
effect of non-zero i. is to displace the bifurcation of 
solutions at 6 = @m/2)‘, (pn = 1,2.. ) for I = 0 into 
solutions in which the amplitude A increases smoothly 
with Rayleigh number, S, the value of A being largest 
initially near the sidewalls so that the convection cells 
spread inwards from these walls as the Rayleigh 
number increases. A smooth increase of amplitude of 
this kind is consistent with the observations of [l]. 

The situation is modified by a further lateral modu- 
lation of the cells if the upper and lower surfaces are 
sloping, 6 - ,uG then representing an effective local 
Rayleigh number in equation (4.3). This effect may be 
seen in isolation by taking 3. = 0, G, = 0 and G, = X 
+ 1 so that the upper surface is horizontal but the 
lower one slopes upwards from the vertical sidewall at 
x=- L at an angle pen; ’ L-‘. It emerges that 
asymptotic solutions of (4.3) yield an extremely ac- 
curate prediction of the variation of the critical Ray- 
leigh number over the entire range of angles 0 I 1-1 
< %. 

First, by formally taking p small in (4.3) we may 
perturb about the linear eigensolution A xcos nX/2 at 
6 = 7r2 j4 to obtain the critical value of 6 at the onset of 
convection as 

6, =; + /I - c ! -$ - $ p2 + . . . . (p -0). (4.4) 

As 6 increases from this value the effect of the 
inclination of the base, p, remains small and so the 
profile of A remains virtually symmetric about the 
centre of the cavity as the amplitude rises from its 
initial form near 6 = 6,: 

/ A[ N ?- (6 - &)“2cos~ , (6-6,) 
J3 

(4.5) 

to its limiting uniform distribution 

/Al - 6’ 2, (6-K%). (4.6) 

Boundary layers near each sidewall where 1 * X = 
0(6-“2) and 

,A,-~‘Iztanhli4)“(l~X~i (4.7) 

adjust the solution (4.6) to the sidewall conditions at 
X=Tl. 

Alternatively, we may take p large in (4.3) and the 
flow is then strongly asymmetric. The linear eigen- 
solutions of (4.3) are given by 

AxAi{-p-23[fi-p(X+1)]; 

(r; = /2 3X”, (‘u>> 1) (4.8) 

where Ai is the Airy function whose zeros are denoted 
by -x,, (n = 0,l . . . ) (see [9]). Thus we now obtain 

5, - /?‘3~o = 2.3381 pzf3 , (it+ x) (4.9) 

and as shown in Fig. 2 a combination of the results 
(4.4), (4.9) provides an accurate estimate of the value of 
6, over the entire range ofangles 0 < /L < ZC. For p >> 1 
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FIG. 2. The local scaled critical Rayleigh number, 6,, for the 
onset of convection as a function of the scaled inclination of 
the base of the cavity, p, according to the asymptotic formulae 
(4.4) (dashed lines, strictly valid for /A -+ 0) and (4.9) 

(continuous line, strictly valid for p -+ ~j). 
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the motion is initially confined ta the neighbourhood 
of the sidewall at x = -L, where X0 = p1’3 (X f 1) = 
O(l), and 

IA/ c-1 
N @I ii2 (8 - &Jii2 Ai(X, - x0) (6 + a,). 

P2 
(4.10) 

Here 

1”1= = 
.I 

Ai” (X, - Xo)dX, = 0.49..., 
fJ 

-CC 
f% = 

J 
.4tQ (X, - x0) dX, = 0.10.. ., f4.fi) 

0 

the value of p, having been previously calculated by 
[IO]. As 6 increases from 6, we may expect the 
convection cells to spread from the sidewall across the 
cavity, (4.10) eventually developing into the solution 

~A~~[6-~(X+1)]“2 -I<X+) 
i 

(4.12) 

when 6 = O(p), Near the sidewall at X = - 1 this 
adjusts to the boundary condition A( - If = 0 through 
the appropriate solution (4.7) while at X = S/g - I 
there is a region where X, = pi’3 (1 + X - S/p) = 
O(1) and A = p *I3 A,(X,). A, satisfies the system 

A lx,., - X,A, = A,iA,i’, 

(A,/ ++ (-X,)li2 (X,+ -aI, IA,I-rO(X, --, a), 
(4.13) 

the condition as X, + -(;c, ensuring the correct 
match with (4.12) and that as XI --) CC ensuring the 
final decay of the convection cells. A relevant numerical 
sofution of (4.13) is described in a different context by 
the present author [ll] and a much wider cfass of 
solutions of the real version of the equation, known as 
the second Painlevl transcendent, has been studied by 
[12] and [ 13). The situation persists until 6 reaches the: 
value 2r_; the cells are then in contact with the opposite 
sidewall (X = 1) and an appropriate boundary layer 
solution, similar to that of (4.7), replaces (4.13). As the 
Rayleigh number increases the effect of the inclination 
of the base diminishes and we eventually recover the 
uniform distribution of convection cells across the 
cavity, (4.6), as 6 -+ CC. 

Numerical solutions of the full nonlinear equation 
at successive values of the scaled Rayleigh number, 6, 
and at a moderatevalue of& = 10) are shown in Fig. 3. 
The nature of the asymmetry is seen to be consistent 
with the asymptotic analysis above. A quantity of 
physical reievance, particularly with reference to the 
rn~~u~rnent techniques in various experimental stud- 
ies (e.g. [Ill) is the heat transfer through the top of the 
cavity. The two major cont~butions arising from the 
instability are a variation on the cellular length scale 
proportional to L-‘A(X)e’“@ and a second variation 
on the scale ofthe cavity proportional to L-21 A(X)12, 
caused by the increment in the mean temperature field. 

Both contribute to a change in the total heat transfer of 
O(L-‘) through the top of the cavity and the effect of 
the sidewalls and of the slope of the base on the 
distribution as a function of X can be judged from 
Fig. 3. 

5. DISCUSSION 

Imperfections in cavity geometry have been shown 
to result in two major effects on the pattern of 2-dim. 
cellular convection that evolves near the critical Ray- 
leigh number. Sloping sidewalls result in the initial 
devefopment of rolls near the sidewafts and the roils 
then spread smoothly inwards as the Rayleigh number 
increases. Even sloping horizontal surfaces generate a 
basic flow which is equivalent to a similar non-zero 
sidewall effect and thus a smooth increase in amplitude 
but the effect is weak {see Section 3) and will only be 
si~ificant for Rayleigh numbers closer to the critical 
value than those considered here. Instead, the main 
result is a lateral modulation of the rolls, the dominant 
motion occurring in the vicinity of the largest ‘local 
Rayleigh number, but then spreading into the rest of 
the cavity as the Raybigh number increases. Xn the 
range of Rayleigh numbers R - R. = U(t-“) the 
sidewall effect is significant for angles of slope OfL- ‘) 
for perfectly insulating walls and O(L- ‘12)for perfectly 
conducting walls (unless the slope is constant in the 
latter case), while the lateral effect is si~ifica~t for 
relatively small angles of slope of the horizontal 
surfaces of O(L,-3) and is probably, therefore, one of 
the major causes for concern in accurate experimentaf 
studies of the onset of convection. 

It is of interest to note that the analysis of Section 4 
shows that for a constant angle of slope aL_ l = 
L-’ ai ’ p the horizontal extent of the initial region of 
convection near the sidewalf at x = - L is x + L. = 
O(p*- ’ i3t) and the sot&ion (2.9) for + fails when this is 
comparable with the width of one convection cell ; i.e. g 
_ L3, when the angle of slope is order one. Of course 
the basic flow (3.6) throughout the remainder of the 
cavity is not appropriate when CF =0(l) (i.e. fi =O{L2)) 
since the Taylor expansions of (3.2) are no longer valid, 

4 

63 

2 

-05 05 

FIG. 3. Profiles of the amplitude of convection across the 
cavity, A(X), at various values of the scaled Rayleigh number, 
6, as determined from (4.3) with I = 0, G, = 0 and C.i, = 
X+ 1. The scaled angle of inclination of the base is p = 10. 
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but with act,!, this flow remains small, u = O(aL-‘) 

and does not change the Airy function solution (4.10) 
at the onset ofconvection. In fact the basic state for a = 

0( 1) and general Go, G, can still be found from (3.5) 
and (3.2) and has 

0 1 = R[Go + (Gi - Go)z] 
1 + a(G, - Go) ’ 

(_ l < X < 1) (5.1) 

in place of (3.6) and u, can be found from integration of 
u IZIT = 8,, subject to u, (X, aG,) = ut (X, 1 +aG,)= 

0 and the flux constraint Ji&,‘“l u1 dz = 0. 

We have concentrated attention on the range of 
Rayleigh numbers given by (2.8) since this is the range 
in which significant changes occur in the amplitude of 
convection across the cavity. For small values of 1 in 
(4.3) the behaviour of solutions near the onset of 
convection is also of interest and a series of regimes 
must be considered as i. -+ 0, and relate to the 

apparent indeterminacy of the phase of A in (4.3) when 
1 = 0. These questions are discussed in detail by 
Daniels [14]. Other points of interest are the possi- 
bility of additional ‘phase winding’ solutions of (4.3) 

when 1 = O(1) (see [15]) although these appear to be 
limited to higher Rayleigh numbers, 6 >> 1, when i is 
small. Also, faster variations in the slope of the 
horizontal surfaces can have significant effects, par- 
ticularly if the variations are of a wavelength common 

with that of the convection (cf. [7]). Finally, we note 

that if the upper and lower surfaces should be dis- 
placed parallel to one another so that Go = G,, the 
extra term in the amplitude equation is no longer 
present (cf. [4]) and new effects, including a significant 
interaction between the basic flow and the sidewalls, 
can arise (Daniels [16]). 
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EFFET DE L’IMPERFECTION GEOMETRIQUE SUR LE DEBUT DE CONVECTION DANS 
UNE CAVITE BIDIMENSIONNELLE ET PEU PROFONDE 

Resume-On etudie theoriquement l’effet des imperfections geometriques sur la formation de la convection 
faiblement non-liniaire dans une cavite bidimensionnelle peu profonde et uniformement chauffee par le bas. 
Si les parois laterales de la cavite ne sont pas parfaitement verticales des rouleaux convectifs apparaissent pres 
de ces parois et ils s’etendent vers le centre de la cavite lorsque le nombre de Rayleigh augmente. Si les surfaces 
horizontales ne sont pas parfaitement paralleles, il en rbulte principalement une modulation laterale des 
rouleaux sous l’effet compose du pincement des surfaces “horizontales”et de la presence des parois laterales. 
On presente un cas special interessant, la solution pour une cavite avec une base uniformement pentue, et des 
methodes asymptotiques foumissant une prediction remarquablement precise du nombre de Rayleigh 

critique en fonction de l’angle d’inchnaison. 
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DIE AUSWIRKUNG GEOMETRISCHER STC)RUNGEN AUF DAS EINSETZEN DER 
KONVEKTION IN EINEM FLACHEN ZWEIDIMENSIONALEN BEHALTER 

Zusammenfassung-Es wird eine theoretische Studie uber den EinfluB geometrischer Storungen auf die 
Struktur schwacher nichtlinearer Kovektion in einem flachen zweidimensionalen Behalter, der gleichformig 
von unten beheizt wird, durchgefiihrt. Wenn die Seitenwande des Behalters nicht exakt vertikal sind, 
erscheinen zuerst an diesen W&den Konvektionswalzen, die sich danach mit zunehmender Rayleigh-Zahl 
zum Behalterinneren hin ausbreiten. Sind die horizontalen Begrenzungen nicht vollstandig parallel, so ist die 
Hauptauswirkung eine seitliche Beeninflussung der Walzen, bedingt durch das Zusammenwirken der 
Nichtparallelitat der horizontalen Begrenzungen und der Seitenwande. Als interessanter Spezialfall wird die 
Losung fur einen Behalter mit gleichformig schragem Boden und ein Asymptotenverfahren angegeben, das 
eine bemerkenswert genaue Berechnung der kritischen Rayleigh-Zahl als Funktion des Neigungswinkels 

gestattet. 

BJIMIIHHE I-EOMETPWgECKMX AEQEKTOB HA B03HHKHOBEHHE KOHBEKHMM 
B Y3KOI7 ABYXMEPHOti IIOJIOCTH 

Armorauna - Hposeneuo reoperrisecxoe riccnenosamie B~HSHBI~ reoMerpw~ecxux nei$exron na 803- 

HKKHOBeHHe cna6o HeJUiHeiiHOfi KOHBeKUWW B y3KOti LlByXMepHOii paBHOMepH0 HarpeBaeMOfi CHW3y 

UOJIOCTH. B CnyYae, KOrlIa 6OKOBble CTeHKA UOnOCTA He IlBnlllOTCIl CTpOrO BepTHKanbHblMH, KOH- 

BeKTtiBHbte Banbl nosBnmoTcK cHaqana B03ne 3mx cTeH, a 3aTeh4, no h4epe yeene~emia qricna Penea, 
paCUpOCTpaHfllOTCR K UeHTpy nOnOCTEt Ecna me rOpH30HTanbHbIe UOBepXHOCTH He CTpOrO napan- 

nenbsbl,TonpomxomiTnonepewa~MonynaUeaBanoB83-3a coBh.iecTHoroBnmHm HenapannenbHocTa 

ropa30HTanbHbrxnoBepxtiocTeltiHanewiff 60~0~bl~cTeH. IlpencTasneHo pemeHse ana cneUlianbHor0 

CnyYaX, KOrna OCHOBaHHe nOJIOCTH WMeeT paBHOMepHbli HaKnOH. Haiineno, ST0 aCWMUTOTW,eCKHMH 

MeTOLtaMH MOKHO C 6onbmoi TO'iHOCTbIO OUpeIlenHTb 3aBNCHMOCTb KpeTWteCKOrO YBCna Penes OT 

yrna naxnona. 


