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Abstract—A theoretical study is made of the effect of geometrical imperfections on the formation of weakly
nonlingar convection in a shallow two-dimensional cavity aniformly heated from below. I the sidewalls of the
cavity are not quite vertical then convective rolls first appear near these walls and subsequently spread
inwards to the centre of the cavity as the Rayleigh number is increased. If the horizontal surfaces are not quite
parallel then the major effect is a lateral modulation of the rolls due to a combination of the misalignment of
the horizontal surfaces and the presence of the sidewalls. As an interesting special case, the solution for a
cavity of uniformly sloping base is presented and asymptotic methods are found to provide a remarkably
accurate prediction for the critical Rayleigh number as a function of angle of inclination.

NOMENCLATURE

ab, constants;

a; 334 amplitude equation coefficients;

AglX),  amplitude function;

A{X), A{X), scaled amplitude functions;

A, B, constants;

d, cavity height;

) eigenfunctions;

g acceleration of gravity ;

GofX).G{X), lateral variation of horizontal
walls;

G =Gy = G,

h(z), vertical variation of vertical walls;

L, semi aspect ratio of cavity;

n, direction normal to sidewalls;

P non~dimensional pressure;

j scaled non-dimensional pressure;

R, Rayleigh number;

R,, critical Rayleigh number for infinite
layer;

3, direction along sidewall;

T, Ty, temperatures of lower and upper surfaces
{respectively};

W, non-dimensional velocity components;

uy,wy, scaled non-dimensional velocity com-
ponents,

X, z, non-dimensional co-ordinates;

X, X, X,. scaled horizontal co-ordinates.

Greek symbols

a, error in alignment of horizontal walls;
&, eigenvalues;

&, coefficient of thermal expansion;

8, error in alignment of vertical walis;

Vo ¥s constants;

dg, & scaled local Rayleigh numbers;

K, thermal diffusivity ;

A, scaled form of §;

¥, non-dimensional stream function;

2, density;

&, Prandtl number;

8, non-dimensional temperature
perturbation;

8, scaled non-dimensional temperature
perturbation ;

i, scaled form of «;

¥, kinematic viscosity;

= Znr zeros of the Airy function, Ai

1. INTRODUCTION

Onge oF the difficulties encountered in experimental
studies of the heat transport properties of cavity flows,
particularly if the apparatus is constructed on a very
small scale, is that of ensuring that the cavity walls are
of perfect length and alignment. For example, novel
features of experimental results obtained by Ahlers [1]
are thought to be attributable [2] to small imper-
fections in geometry involving typical variations of as
little as 3% of the height of the cavity. This paper
considers the effect of such imperfections or misalign-
ments on the flow in a shallow 2-dim. cavity of semi-
aspect ratio L (> 1) bounded by rigid surfaces and
uniformly heated from below. The upper and lower
planes are maintained at constant temperatures T,
and T, (respectively) where T, > T, and are assumed
to be horizontal to within an error in height of
magnitude «. The sidewalls are taken as either perfect
insulators or conductors and are assumed to be
vertical {i.e. aligned with the direction of gravity) to
within an error in inclination of magnitude f. The
remaining parameters of the problem are the Rayleigh
number R and Prandtl number ¢ defined by

R = dgd* (T, — T\ ¥xv, o =v/k (L.1)
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where & « and v are respectively the coefficient of
thermal expansion, thermal diffusivity and kinematic
viscosity of the fluid ; d is taken as the vertical height of
the cavity at its central point. The steady 2-dim.
Oberbeck—Boussinesq equations are then

u, +w, =0,
o™ uu, + wu) = — p, + Viu,
o™ (uw, +ww,) = — p, + Viw + 0,

ub, + wl, = Rw + V34, (1.2)

Here the co-ordinates x, z, velocity components u,w
and reduced pressure p are non-dimensional with
respect to the quantities d, k/d and px?/d* where p is
the density of the fluid and V2 = (8%/0x?) + (8%/6z*%). 0
is the non-dimensional perturbation from the basic
linear conductive temperature field:

Ky
T=T,+(T, — To)z + (Eg—&g)a (1.3)

The origin of co-ordinates is taken at the centre of the
lower surface (see Fig. 1).

Although in a 3-dim. layer of rectangular planform
the rolls tend to align with the shotter side (Davis [3])
it should be stressed that this does not imply that the
present results are physically unrealistic. Provided the
aspect ratio in the third dimension is smaller than 2L
(but still large compared to 1) we may envisage the
present solutions to apply, at least qualitatively, to the
region which excludes the immediate neighbourhood
of the walls parallel to the x direction. Of course the
imperfect geometry may itself affect the alignment of
the rolls and in a related study of the effect of a lateral
temperature gradient in an infinite system, Weber [4]
has shown that rolls aligned perpendicular to the
direction of lateral variation, as we assume herg, are in
fact preferred over a wide range of Prandtl numbers.

2. SIDEWALL MISALIGNMENT

In this section we assume the upper and lower rigid
surfaces to be perfectly horizontal so that

u=w=0=0(z=0,z=1), 2.1

but assume a misalignment of the left-hand sidewall, its
position being given by
x = — L + Bh{z), 2.2)
where h is an arbitrary function of z and § « 1. If this
wall is assumed to be rigid and perfectly insulating we
require
u(—L + ph,z) = w(— L + Bh,z)

:al(—;:ﬁuﬁh,z):o, (2.3)
on

where n is the normal direction to the wall. Expansion
in Taylor series and use of (1.3) shows that at leading
order these boundary conditions become
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u— L. 2y=w-—-L,2)=0,
o0

—(—L,z) = —BRK(z). (24)

Ox

Clearly the non-zero component of the boundary
condition (2.4) will generate motion near the sidewall,
where x + L = Of(1), for all values of the Rayleigh
number, this motion being governed by the linear
version of equations (1.2), which may be written in the

form

Vo — Ry, =0, (2.5)
where i is the stream function defined by u =,
w = — f,. The solution near the sidewall may thus
be expressed as

v=p ¥ {AeMTNf ()
lm(zu>g
+ Agle—izf{x+f_lf;k (2)
+ B, e OS2}, (2.6)

where * denotes complex conjugate and & = o, — of
and ix, are the triply-infinite set of eigenvalues, with
corresponding eigenfunctions f, , f¥ and f,, of the
system

d2 3

fi=fi=fR-28f7=0 (z=0,1), (27)

resulting from equation (2.5) and boundary conditions
(2.1). The corresponding solution for § may be de-
termined from 8, = V*. The determination of the
eigenvalues 4 with positive imaginary part presents a
considerable numerical problem and although the
corresponding eigenfunctions f; will not be orthogonal
we may, in principle, suppose that they are complete so
that the three boundary conditions will determine the
values of each set of three real constants comprising B,,
and the real and imaginary parts of 4, . Of course (2.7)
is the classical Bénard problem (see [5]) and when R
reaches the critical value of R, = 1707.8 the imaginary
part of the leading eigenvalue, «,, becomes zero (i.e. «,
— oy With o, real) and two components of the solution
(2.6) no longer decay into the bulk of the cavity. The
entire procedure can be described analytically by
replacing the rigid horizontal surfaces by stress-free
ones, since then the f; are orthogonal, f; = sin nnz, (n =
1,2...), Ry = 27n*/4, 0y = n//2 and the A, and B,
can be determined explicitly from (2.4) by Fourier
decomposition of #'(z).

When R just exceeds R, the motion in the bulk of the
cavity can be described using a multiple scales ap-
proach. It is convenient to expand the solution using
L™ as a single small parameter (see [6]) and then
significant changes in the cellular motion first occur in
the range

R =Ry + 8,172, (2.8)

where 8, = O(1). The solution in the bulk has the form
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F1G. 1. Schematic diagram of the cavity cross-section.

Y = L™ A(X)e™™ + AZ(X)e™ ™)1, (2)

+ 0L, (—1<X<l), 29)
where X = L™ 'x and f, is the real eigenfunction
corresponding to a,. The expansion is continued to
terms of O(L™%) to determine the compatibility

equation for the amplitude function 4,, which has the
form

Ag, + @180Ag — (ay + 67 'a3) 4| Ao = 0
2.10)

where a,, a, and a, are positive numerical constants
which have been determined previously (see for ex-
ample [7]). In the stress-free case their values may be
determined analytically asa, = 1/18n%,a, = =*/16,a,
= 0. The boundary condition for thisequationat X =
—1is given by matching the bulk solution (2.9) to the
sidewall solution (2.6) which requires that 4, e =
L™ 1Ay(~1). Thus in the critical range of Rayleigh
number given by (2.8) the misalignment of a perfectly
insulating sidewall has a significant effect on the
motion throughout the container if § = O(L '), and if
the sidewall at x = L has a similar misalignment then
equation (2.10) must be solved subject to boundary
conditions of the form

Ao(—1) = (BL)ae”, Ao(1) = (BL)be™", (2.11)

where y = oL + 7, and a,b and y, are numerical
constants. In the stress-free case gis given by a = 3f2 i
sin 7z dz, with 3, = cot™'(1/2,/2).

If the sidewalls are perfect conductors the third
boundary condition in {2.3) is replaced by

T(_ L + ﬁh’ 2} = T(} + (TI - TO)S/ESmux {212)

where s measures distance along the wall. Expansion in
Faylor series and use of (1.3) now shows that {2.4) is
replaced by

u(—L,z) =w(—L,z) =0,
1 z h
9(-—-14,3):%;821{1}{ h’zdz—f h’zdz}. (2.13)
P [+ -

Thus the misalignment of a perfectly conducting wall
has a significant effect if § = O(L~'?) and the
boundary conditions {2.11) are replaced by conditions
of the form

Ao{—1) = (B*Lae”, Ay(1) = (B°Lbe™". (2.14)

339

Note that in this case the effect disappears if the
sidewall slopes at a constant angle since then 4’ is
constantin (2.13) giving 8{ — L, z) = 0; the constant ais
then zero, as for a vertical wall.

3. LATERAL MISALIGNMENT

Consider now the modifications which occur if the
upper and lower surfaces are maintained at constant
temperatures T, and T, but are no longer perfectly
horizontal. Let us suppose that the surfaces are given
by

z=aG{X)and z = 1 + oG (X), 3.1

where we assume initially that « « 1. The boundary
conditions are then

ulx, aGo) = w(x,aGo) = u(x,1 + aG,)
=w(x,1 +aG,) =0,

Tx,aGy)=T,, Tix,1+4+aG)=T,, (32

and expansion in Taylor series and use of (1.3} yields at
leading order

ulx, 0} = wix,0) = u{x, 1} = wix, 1} =0,
(x,0) = aRGH{X), 6(x,1)=aRG (X} {3.3)
The motion generated in the cavity by these boundary

conditions can be determined from equations (1.2). In
the bulk

u=L 'au(X,2)+ ..., w=L 2aw(X,2)+...,

p=uapX,z)+ ..., 0=al(X,2)+... (34)
where
uy +w =0, O=—py, +u,
O0=-p,+8,, 0, =0 3.5)

The appropriate solutions which satisfy the boundary
conditions (3.3) are

8, = R[G, + (G, — Go)z],
u, = R{FH (G — Gok* + LG2°
~ 457G, + 3G)2* + (3G, + 2Gy)z]. (3.6)

These do not satisfy the boundary conditions at the
sidewalls of the cavity and so generate additional
motions in the end-regions, being effectively equivalent
to non-zero boundary conditions similar to those of
(2.4) and (2.13) above. If the sidewall is vertical and
either perfectly insulating or conducting it follows
from {3.4) and {3.6) that the magnitude of the motion
generated there is O(al ') and then the amplitude
function A, must vanish at X = +1. However, the
equation for 4, is now modified by additional terms
arising from (3.6) which are due to the variation in
height of the layer. The effect is equivalent to a ‘local’
Rayleigh number varying by an amount O(x) and so
the appropriate magnitude of o to modify (2.10) when
35 = O{1) is O{L™?%). The equation becomes

Ag,, + @004, — (@LP)a(Gy — G4,
~(az + 67 az)d|Ao|* = 0. (3.7)
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The corresponding equation for a variation of just
the lower surface of an infinite layer has been derived
previously by Eagles [8] and the value of the positive
numerical constant a, may be inferred from his results
if required. In the infinite layer (— 7~ <X< %)
equation (3.7) generally has both a discrete and
continuous spectrum of solutions, depending upon
whether the local Rayleigh number at infinity is
subcritical or supercritical (see [8]), but in Section 4
below we find that the presence of sidewallsat X = +1
not only removes the continuous spectrum, but has a
strong influence on the amplitude profiles across the
layer.

4. SOLUTIONS OF THE AMPLITUDE EQUATION

We may combine the effects of lateral and sidewall
misalignment by writing

a=L"%a;'p,
B=L""(a, + 0 'a,) 14
(insulating sidewall}

5 — L'IR (az + 6“183)—“4}}‘;2

{(conducting sidewall) (4.1)
and with

Ao = (ay + 67 tay) ' PAX), a8y =,
G, — G, = G(X), (42)

we obtain from (3.7), (2.11) and (2.14) the general
system

Ay + 04 — uG(X)A — A|A|* =0,

A(=1) = Jae”, A(l) = Abe™". (4.3)

Solutions of this system in the case g = 0 have
already been discussed by [6] in the context of
imperfectly insulated vertical sidewalls, the parameter
/ then representing the magnitude of the heat flow
through the sidewalls rather than their slope. The main
effect of non-zero 4 is to displace the bifurcation of
solutions at & = (mn/2)*, (m = 1,2...)for A = Qinto
solutions in which the amplitude 4 increases smoothly
with Rayleigh number, §, the value of 4 being largest
initially near the sidewalls so that the convection cells
spread inwards from these walls as the Rayleigh
number increases. A smooth increase of amplitude of
this kind is consistent with the observations of [1].

The situation is modified by a further lateral modu-
lation of the cells if the upper and lower surfaces are
sloping, 8 — uG then representing an effective local
Rayleigh number in equation (4.3). This effect may be
seen in isolation by taking A = 0,G, = O0and G, = X
+ 1 so that the upper surface is horizontal but the
lower one slopes upwards from the vertical sidewall at
x = — L at an angle pa;* L73 It emerges that
asymptotic solutions of (4.3) yield an extremely ac-
curate prediction of the variation of the critical Ray-
leigh number over the entire range of angles 0 < u
< .

First, by formally taking p small in (4.3) we may
perturb about the linear eigensolution A xxcos nX/2 at
& = n*/4 to obtain the critical value of 6 at the onset of
convection as

P. G. DANIELS

n? 5 1 5
LR . o (- 0). (44
8, s (n4 3n2># +... -0 (44)

As & increases from this value the effect of the
inclination of the base, y, remains small and so the
profile of 4 remains virtually symmetric about the
centre of the cavity as the amplitude rises from its
initial form near § = 6,:

2 X
]~ 50 =00 cos"—2~ (33 (45)
to its limiting uniform distribution
|A] ~ 8'2, (5. {4.6)

Boundary layers near each sidewall where 1 + X =
0(5~ 4%y and

12
| 4| ~ 8" tanh [G) (1+ X)}

adjust the solution (4.6) to the sidewall conditions at
X=7F L

Alternatively, we may take p large in (4.3) and the
flow is then strongly asymmetric. The linear eigen-
solutions of (4.3) are given by

“@.7)

AxAi{— p 26 — p(X + 1]}
§=p*Yy,. (u»l) (48)

where Ai is the Airy function whose zeros are denoted
by —x. (n = 0,1...) (see [9]). Thus we now obtain

5, ~ uy = 23381 422 (- x) (4.9)

and as shown in Fig. 2 a combination of the results
{4.4), (4.9) provides an accurate estimate of the value of
8, over the entire range of angles 0 < u < . Forpu » 1

FiG. 2. The local scaled critical Rayleigh number, 3, for the
onset of convection as a function of the scaled inclination of
the base of the cavity, u, according to the asymptotic formulae
(4.4) (dashed lines, strictly valid for p — 0} and (4.9)
{continuous line, strictly valid for p — ).
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the motion is initially confined to the neighbourhood
of thesidewallat x = —L,where Xy = u!* (X + 1) =
O(1), and

u 1/2
W‘(“) (6 — 8 Ai(Xo ~ 2o) (8 60).

iy
{4.10)
Here
0= j AP (X, — 20} dX, =049...,
14}
Hy = j At (Xy — 204X, =010..,, 411}
0

the value of u, having been previously calculated by
{10]. As & increases from &, we may expect the
convection cells to spread from the sidewall across the
cavity, {4.10) eventually developing into the solution

Al ~[6 ~ (X + D]*? <- 1<X<f:* l)
4.12)

when & = O(u). Near the sidewall at X = —1 this

adjusts to the boundary condition A{ — 1} = Othrough

the appropriate solution (47} while at X = &/u — 1

there is a region where X, = p!'? (1 + X — 6/u) =

O(l)and 4 = p' A,(X,). A, satisfies the system

hw — XA = Ax{Aliz’

[Ai] ~ (=X )2 (X > ~0), |A;|=0(X;~ o)

{4.13)

the condition as X; — - oo, ensuring the correct
match with (4.12) and that as X, — oc ensuring the
final decay of the convection cells. A relevant numerical
solution of {4.13} is described in a different context by
the present author {11] and a much wider class of
solutions of the real version of the equation, known as
the second Painlevé transcendent, has been studied by
{12} and [13]. The situation persists until § reaches the
value 2u; the cells are then in contact with the opposite
sidewall (X = 1) and an appropriate boundary layer
solution, similar to that of (4.7}, replaces (4.13). As the
Rayleigh number increases the effect of the inclination
of the base diminishes and we eventually recover the
uniform distribution of convection cells across the
cavity, (4.6), as & — oc.

Numerical solutions of the full nonlinear equation
at successive values of the scaled Rayleigh number, §,
and at a moderate value of u{= 10)are shownin Fig. 3.
The nature of the asymmetry is seen to be consistent
with the asymptotic analysis above. A quantity of
physical relevance, particularly with reference to the
measurement techniques in various experimental stud-
ies {e.g. [1]) is the heat transfer through the top of the
cavity. The two major contributions arising from the
instability are a variation on the cellular length scale
proportional to L™ A(X)e"* and a second variation
on the scale of the cavity proportional to L™} 4(X)]?,
caused by the increment in the mean temperature field.
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Both contribute to a change in the total heat transfer of
O(L ™) through the top of the cavity and the effect of
the sidewalls and of the slope of the base on the
distribution as a function of X can be judged from
Fig. 3.

5, DISCUSSION

Imperfections in cavity geometry have been shown
to result in two major effects on the pattern of 2-dim.
cellular convection that evolves near the critical Ray-
leigh number. Sloping sidewalls result in the initial
development of rolls near the sidewalls and the roils
then spread smoothly inwards as the Rayleigh number
increases. Even sloping horizontal surfaces generate a
basic flow which is equivalent to a similar non-zero
sidewall effect and thus a smooth increase in amplitude
but the effect is weak (see Section 3) and will only be
significant for Rayleigh numbers closer to the critical
value than those considered here. Instead, the main
result is a lateral modulation of the rolls, the dominant
motion occurring in the vicinity of the largest ‘local’
Rayleigh number, but then spreading into the rest of
the cavity as the Rayleigh number increases. In the
range of Rayleigh numbers R — R, = O(L"%) the
sidewall effect is significant for angles of slope O{L™ ')
for perfectly insulating walls and O(L ™ /) for perfectly
conducting walls {unless the slope is constant in the
latter case), while the lateral effect is significant for
relatively small angles of slope of the horizontal
surfaces of O(L™?) and is probably, therefore, one of
the major causes for concern in accurate experimental
studies of the onset of convection.

It is of interest to note that the analysis of Section 4
shows that for a constant angle of slope al.”! =
L™%a; ! u the horizontal extent of the initial region of
convection near the sidewallat x = — Lisx + L =
Ofu " Lyand the solution (2.9) for i fails when this is
comparable with the width of one convection cell ;ie.
~ L3, when the angle of slope is order one. Of course
the basic flow (3.6) throughout the remainder of the
cavity is not appropriate when ¢ =0(1) (ie. 4=0(L?)
since the Taylor expansions of (3.2) are no longer valid,

FiG. 3. Profiles of the amplitude of convection across the
cavity, A(X), at various values of the scaled Rayleigh number,
4, as determined from (4.3) with 4 = 0, G, = 0 and G, =
X +1. The scaled angle of inclination of the base is u=10.
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but with a<« L this flow remains small, ¥ = O(xL™!)
and does not change the Airy function solution (4.10)
at the onset of convection. In fact the basic state fora =
O(1) and general G,, G, can still be found from (3.5)
and (3.2) and has

0. — R[G, + (G, — Gy)z]
1= )

1+ a(G, — Gy) -1

(—1<X<1),

in place of (3.6) and u, can be found from integration of
u = 0, subject to u; (X, aGy) = u; (X, 1+aG,)=
0 and the flux constraint {1} *®' u, dz = 0.

We have concentrated attention on the range of
Rayleigh numbers given by (2.8) since this is the range
in which significant changes occur in the amplitude of
convection across the cavity. For small values of 1 in
(4.3) the behaviour of solutions near the onset of
convection is also of interest and a series of regimes
must be considered as 4 - 0, and relate to the
apparent indeterminacy of the phase of A in (4.3) when
A = 0. These questions are discussed in detail by
Daniels [14]. Other points of interest are the possi-
bility of additional ‘phase winding’ solutions of (4.3)
when 4 = 0(1) (see [15]) although these appear to be
limited to higher Rayleigh numbers, § » 1, when 4 is
small. Also, faster variations in the slope of the
horizontal surfaces can have significant effects, par-
ticularly if the variations are of a wavelength common
with that of the convection (cf. [7]). Finally, we note
that if the upper and lower surfaces should be dis-
placed parallel to one another so that G, = G, the
extra term in the amplitude equation is no longer
present (cf. [4]) and new effects, including a significant
interaction between the basic flow and the sidewalls,
can arise (Daniels [16]).

12.

13.

14,

15.

16.
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EFFET DE L'IMPERFECTION GEOMETRIQUE SUR LE DEBUT DE CONVECTION DANS
UNE CAVITE BIDIMENSIONNELLE ET PEU PROFONDE

Reésumé—On étudie théoriquement I'effet des imperfections géométriques sur la formation de la convection
faiblement non-linéaire dans une cavité bidimensionnelle peu profonde et uniformément chauffée par le bas.
Si les parois latérales de la cavité ne sont pas parfaitement verticales des rouleaux convectifs apparaissent prés
de ces parois et ils s'étendent vers le centre de la cavité lorsque le nombre de Rayleigh augmente. Si les surfaces
horizontales ne sont pas parfaitement paralléles, il en résulte principalement une modulation latérale des
rouleaux sous l'effet compose du pincement des surfaces “horizontales” et de la présence des parois latérales.
On présente un cas spécial intéressant, la solution pour une cavité avec une base uniformément pentue, et des
méthodes asymptotiques fournissant une prédiction remarquablement précise du nombre de Rayleigh
critique en fonction de I'angle d’inclinaison.
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DIE AUSWIRKUNG GEOMETRISCHER STORUNGEN AUF DAS EINSETZEN DER
KONVEKTION IN EINEM FLACHEN ZWEIDIMENSIONALEN BEHALTER

Zusammenfassung—Es wird eine theoretische Studie iiber den EinfluB geometrischer Stérungen auf die
Struktur schwacher nichtlinearer Kovektion in einem flachen zweidimensionalen Behalter, der gleichformig
von unten beheizt wird, durchgefiihrt. Wenn die Seitenwinde des Behilters nicht exakt vertikal sind,
erscheinen zuerst an diesen Winden Konvektionswalzen, die sich danach mit zunehmender Rayleigh-Zahl
zum Behilterinneren hin ausbreiten. Sind die horizontalen Begrenzungen nicht vollstindig parallel, soist die
Hauptauswirkung eine seitliche Beeninflussung der Walzen, bedingt durch das Zusammenwirken der
Nichtparallelitit der horizontalen Begrenzungen und der Seitenwinde. Als interessanter Spezialfall wird die
Losung fiir einen Behélter mit gleichformig schrigem Boden und ein Asymptotenverfahren angegeben, das
eine bemerkenswert genaue Berechnung der kritischen Rayleigh-Zahl als Funktion des Neigungswinkels
gestattet.

BJIMAHHUE FEOMETPUYECKHUX JNE®PEKTOB HA BOSHMKHOBEHHWE KOHBEKLHUH
B Y3KOW OBYXMEPHOW ITOJIOCTU

Annoraums — [IpoBeIeHO TeOpeTHYECKOE HMCCIeNOBaHKe BJIMSHMA [€OMETPHYECKHX Ne(EeKTOB Ha BO3-
HHUKHOBEHHE €/1a00 HEJIHHEHHOH KOHBEKIMM B Y3KOH ABYXMECDHON DABHOMEPHO HArpEeBAaEMON CHH3Y
nostocTH. B cnyuae, koraa GOkOBBIC CTEHKH MOJIOCTH HE ABJSIOTCS CTPOTO BEPTHKA/JbHBIMH, KOH-
BEKTUBHBIE BaJibl MOSBJIAIOTCA CHayalla BO3JIE 3THX CTEH, a 3aTeM, 110 Mepe yBeJiHueHus yucna Penes,
PacnpoCTPaHAIOTCS K LEHTPY MOJOCTH. ECIM e rOpH3OHTANLHBIE MOBEPXHOCTH HE CTPOrO mnapasn-
JIEIbHBI, TO IPOUCXOAHUT NONEPEYHAast MOLYJIALHMA BAJIOB H3-3a COBMECTHOTO BJIHSHHS HENAPAJIEILHOCTH
TOPU3OHTAJIBLHBIX HOBEPXHOCTEN H HANMMUKA GOKOBBIX CTeH. [1peacTaBiieHO pelleHne WIS ClIeLMalbHOTO
Cyyasi, KOT1la OCHOBAHHE TOJIOCTH HMEET PaBHOMEDHbIH HakjoH. HaiifeHo, 4TO acHMNTOTHYECKMMH
METOJaMH MOXHO C GOJIbLIOH TOYHOCTBIO ONPENEIMTH 3aBHCHMOCTb KPHTHHECKOTO 4Mcna Penes or
yria HakKJIoHa.
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